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LIQUID CRYSTALS, 1994, VOL. 16, No. 5, 831-843 

Liquid crystal anchoring transitions induced by thermal motion 

by B. LIN and P. L. TAYLOR* 
Department of Physics, Case Western Reserve University, 

Cleveland, Ohio 44106, U.S.A. 

(Received 19 March 1993; accepted 14 September 1993) 

The thermal motion of a substrate is shown to have strong effects on the 
orientation of liquid crystal molecules in contact with it. Using an inverted- 
pendulum model, we find that the orientation of the liquid crystal molecules can 
have a sequence of transitions between planar and homeotropic orientations. 
Analytical expressions for stability conditions for the homeotropic orientations are 
found for both monochromatic and some multiple-mode thermal motions, and in 
both homeotropic and planar anchoring cases. Numerical simulations confirm the 
analytical model calculations and show that strong interactions between molecules 
favour processes of dynamic stabilization and destabilization of the homeotropic 
orientation. 

1. Introduction 
The orientation, or anchoring, of liquid crystal molecules on a solid substrate is 

determined by a number of factors, including the type of liquid crystal and substrate in 
question, the surface condition, and the temperature [ 1,21. Consequently, transitions 
in anchoring direction are expected as those factors are varied. Anchoring transitions 
attributed to several origins have been reported in experiments [3-1 I]: changes in 
interfacial surfactants, substrate structure and temperature all appear capable of 
inducing anchoring transitions [ 1,2]. In systems of liquid crystals on substrates coated 
with amphiphilic compounds, anchoring transitions from tilted to homeotropic (i.e., 
vertical) alignments have been reported when the temperature is increased [7-91. A 
sequence of transitions from a tilted to a homeotropic then back to the tilted alignment 
have been observed in systems of MBBA on glass substrates coated with emissions 
from charred paper, and of cyanobiphenyl materials on substrates coated with 
fluorocarbon polymer [ S ,  61. 

There have been several theoretical papers [ 12-1 51 discussing the surface free 
energy and anchoring energy. However, there appears to be little discussion in the 
literature of the microscopic mechanism of the temperature-driven anchoring tran- 
sition which is the topic of this paper. We will consider the effects of thermal motion of 
the substrate on anchoring changes of liquid crystal molecules. By using an inverted- 
pendulum model with a vibrating point of support, we will show that in either planar or 
homeotropic alignment the thermal motion can stabilize or destabilize the 
homeotropic alignment and be a driving force for anchoring transitions [ 161. 

2. The model 
We consider a uniform rigid rod of length 1 and mass m attached to a pivot point 

which vibrates vertically (i.e. perpendicular to the surface) as shown in figure 1. A 
potential a(@, which can favour either a horizontal or vertical orientation, acts on the 
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832 B. Lin and P. L. Taylor 

rod. This inverted-pendulum model is employed as a simple model for a rod-shaped 
nematic liquid crystal molecule in interaction with a substrate. The classical 
Lagrangian 3 for the displacement B of the molecule from the z direction is given by 

Here z(t) is the vertical position of the vibrating substrate and the potential w(0) 
determines the preferred alignment of the liquid crystal molecule in the absence of 
dynamic effects. We write this molecular anchoring energy function 0(0), which 
includes the effects of all static interactions between a single molecule and a substrate 
surface, as 

m(O)  =+coo sin2 (y8), (2) 

where wo is the molecular anchoring energy (positive for homeotropic and negative for 
planar anchoring), and y =( 1 -2b0/n)- ’, with bo being the small angle between the in- 
plane and easy directions when wo < 0. Forms similar to expression (2) have been 
derived for dispersion and polar interactions between liquid crystal and substrate 
molecules based on van der Waals forces. Expression (2) is also similar in form to the 
Rapini-Papoular expression [ 171 for anchoring energy. 

The equation of motion derived from the lagrangian (1) is then 

d2% 3 dw(8) 3 (dZZ)  +-- - sinO. - ___ _ - ~ _ _  
d t 2 -  m1’ dO 21 d t2  (3) 

The two terms on the right-hand side of this equation have different origins. The torque 
dw(O)/dO caused by the anchoring energy favours a planar or homeotropic alignment 
depending on the sign of coo, while the surface vibration, d2z /d t2 ,  gives rise to an 
effective force of dynamic origin, and can stabilize or destabilize the homeotropic 
alignment depending on the magnitude of the vibration. 

If the substrate vibration z is taken to be a simple harmonic oscillator, we can write 

z(t)  = a cos (at + v ] ) ,  (4) 

Figure 1. An inverted-pendulum model for a nematic liquid crystal molecule on a substrate. 
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Thermally induced anchoring transitions 833 

with SZ a typical phonon frequency and q an arbitrary phase. Then the general equation 
of motion (3) is written as 

3. Homeotropic anchoring energy 
For a homeotropic anchoring energy, the y factor in equation (2) is unity and 

with wn >0, reflecting the fact that the minimum energy occurs when the liquid crystal 
molecule is oriented vertically. The corresponding equation of motion is 

- +- sin 28 d20 30, 
dt2 2m12 

R2 cos SZt sin 6 = 0, (7) 

where y in equation (4) has been taken to be z. Making a small-angle approximation for 
8 gives 

This is a Mathieu equation [l S] and is homologous to the Schrodinger equation for an 
electron moving in a cosinusoidal potential in one dimension. Its solutions are Mathieu 
functions, and can be written in the general form 

e(t)=Au((, t)exp(i5t)+Bu(t,  -t)exp(-i(t), (9) 
where u((, t) is a periodic function of time with period 24SZ and A and B are constants. 
Only when ( is real can the solution for 6(t) remain small, corresponding to a 
homeotropic alignment of the molecule. Real 4 values exist over certain ranges of wo, SZ 
and a. Figure 2 shows the form of ( as a function of the amplitude a of vibration for fixed 
on and SZ, and shows the existence of a range of a over which no real 4 exists. 
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a l l  
Figure 2. A typical band structure of the frequency 5 in a homeotropic-anchoring system. For 

the example shown, 3w,/(rn12~Z)=0~025. The system is in a homeotropic alignment when 
(a/l)=O. 
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8 34 B. Lin and P. L. Taylor 

When the amplitude a and frequency R of the oscillation in equation (4), are small, 
one expects that the motion of the molecule will be stable around 8=0, and the 
observed director will remain homeotropic. However, as a becomes larger, the 
vibration starts to destabilize the homeotropic orientation. The threshold values of w,, 
Q and a where t becomes complex mark the transition to a planar alignment, 
homeotropic alignment becoming unstable, and can be approximately related by the 
equation 

for the frequency range Qz 3(12w0/ml2), which is the typical frequency range of the 
maximum phonon-mode frequency. Figure 3 shows two numerically-calculated 
stability regions (phase diagram) for homeotropic and planar alignments in (coo, a) 
space. Since a typical physical system corresponds to the area around the origin in the 
phase diagram, the region marked I is the prime homeotropic region. The negative-w, 
portion of the diagram corresponds to planar anchoring, and will be discussed in the 
following section. An anchoring transition from a homeotropic to a planar alignment 
occurs as the amplitude a exceeds the threshold value determined by equation (10). If 
we consider our model to represent a liquid crystal molecule vibrating in a 
monochromatic mode that contains thermal energy k,7; which is of the order of rna2Q2, 
the condition for destabilization of the homeotropic phase becomes 

After the transition, the system will stay in the planar phase for a certain range of a, 
depending on the values of w, and R. As a is further increased, the system will in 
principle enter the second homeotropic region marked I1 in figure 3; this however, is 
not physically realizable since as we shall see, the typical value of w,/(mlzQ2) is around 

1 00 
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all 
Figure 3.  Phase diagram of homeotropic (regions I and I / )  and planar alignments. Here 

J = Irnl’. 
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Thermally induced anchoring transitions 
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835 

1000 1200 1400 1600 

7- 

Figure 4. Stable motion of a liquid crystal molecule in the homeotropic alignment, as obtained 
from numerical calculations. Here 7 =!A. 

10- '. Figure 3 accordingly shows that the amplitude a would have to be several times 
the molecular length for this condition to be satisfied. 

I t  is worthwhile noting that the discussion in this section has focused on the stability 
of the homeotropic alignment (0 % 0) for initially homeotropic anchoring. The 
condition (equation (10)) for the anchoring transition from homeotropic to planar 
alignment is the condition under which the homeotropic anchoring loses its stability. 
That is, the solutions described in equation (9) cease to be oscillatory and become 
exponentially increasing with time. This takes 0 out of the small-angle regime of the 
linearized equation and sends the molecule into the region of near-planar alignment. 
The reverse transition occurs when 0 can again take on small, oscillating values. 

Within a homeotropic region, the form of 0(t) is like that shown in figure 4. The 
molecule's orientation displays a rapid component, having angular frequency R, 
superimposed on a slower oscillation of angular frequency 4. 

4. Planar anchoring energy 
When the anchoring energy favours a planar orientation, w(O), still written as a 

function of 0 measured from the z axis, has the form 

with wo negative, and where y > 1 represents a near-planar tilted anchoring and y = 1 
corresponds to a planar anchoring. We will use the term 'planar' to refer to  both the 
planar and the tilted anchorings. As in the case of homeotropic anchoring, imposition 
of a vertical harmonic oscillation of the substrate, given by equation (4) with q = O  and 
with the anchoring energy as in equation (1 l), leads to the equation of motion 

-+---sin ( 2 ~ 0 )  
d20  3yw, . 
dt2  2m12 

LR2 cos Qt sin 0 =O. 

Now although the planar orientation corresponds to 0- 4 2 ,  we are seeking the 
possibility that the thermal motion of the substrate destabilizes this orientation, and 
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Figure 5 .  A typical band structure of the frequency in a planar-anchoring system. The 

parameter 3tu0/(rn12R2)= -0,025. In this case the system is not in a homeotropic 
alignment when (a/l)=O. 

causes a transition to the homeotropic alignment. We accordingly look for solutions of 
equation (12) corresponding to small 8. The linearized form of equation (12) is then 

This again is a Mathieu equation, but now with a negative constant coefficient. General 
solutions to equation (13) are still described by equation (9) and real values of the 
frequency 5 are found for certain ranges of u as shown in figure 5. The lower half-space 
of the phase diagram in figure 3 represents this situation for the case when y = 1. In 
contrast to the homeotropic anchoring case, a small vibration amplitude a now allows 
the liquid crystal molecule to be in a planar orientation. Only as u exceeds a threshold 
value, which depends on coo and Q, can the liquid crystal molecule be stabilized in the 
homeotropic orientation. If the amplitude u is small compared to the molecular length 
1 ,  an analytical approximation can be found for the condition that the molecule be 
stabilized in the homeotropic orientation. We have 

- y2w, = %+rnU2Q2). (14) 
These threshold values of u and 0 indicate that thermal energies need to be comparable 
to the  anchoring potential for the liquid crystal molecule to be in the homeotropic 
orientation. As the amplitude a is further increased, the system will remain in the 
homeotropic alignment until u exceeds another threshold value, a point on the right- 
hand boundary of region I in figure 3. Then we expect a second anchoring transition at 
which the system reverts to a planar alignment. As this anchoring transition occurs at a 
large vibration amplitude, a simple analytic expression for threshold values of LI and 52 
cannot be obtained, and numerical calculations must be made to determine them. 
Equation (lo), however, continues to give results that are correct to within a few percent 
for realistic values of coo. 

Planar-homeotropic-planar transition sequences have been experimentally ob- 
served, and were reported in [ S ]  and 1161. In some other experiments [7-91, only the 
transitions of planar to homeotropic anchoring were observed as the temperature was 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Thermally induced anchoring transitions 837 

increased, probably due to the fact that the clearing temperature was reached before the 
system moved into the re-entrant planar phase. 

The preceding analysis has shown that there are conditions under which a 
homeotropic orientation can become dynamically stabilized in a system in which the 
anchoring potential alone favours a planar alignment. However, we have not yet 
discussed any mechanism by means of which the planar to homeotropic transition can 
be activated. Our assumption is that thermal fluctuations will be sufficient to induce 
temporary regions of near-homeotropic orientation, and that this region will nucleate 
the transition in the system as a whole. This supposition has been confirmed by 
numerical simulations of a more complex multilayer model. 

5. Effects of phonon dispersion 
The model equations (8) and (13) were obtained by assuming that the pivot 

displacement z ( t )  was a simple sinusoid, and is equivalent to adopting an Einstein 
model for the lattice vibrations. In reality the solid substrate will exhibit a spectrum of 
phonon frequencies. In this section, we consider the effects of phonon dispersion on 
anchoring transitions and on the stability of the homeotropic phase, and compare the 
results with the results for the monochromatic model. 

For a liquid crystal molecule oscillating with the bulk phonon spectrum of the 
substrate, z(t)  can be written as 

z ( t ) = N -  1 / 2  c z,,sexPCi(nq,st+yl,,,)l, ( 1  5 )  
4,s  

where N is the number of substrate atoms, z , , ~  the real amplitude of the mode of wave 
number q and polarization s, and q4,s  a random phase. To simplify the mathematical 
treatment, we consider a model with only one atom of mass M per unit cell, and for 
which the phonon spectrum is one-dimensional. We also assume temperatures well 
above the Debye temperature. We then write the pivot acceleration in the form 

d2z  
d t2  4 
- = - a,n; cos (a$ + ylq), 

where uq = (2k,  T/MNR,2)1’2, and is an appropriately averaged thermal vibration 
amplitude for mode q. The equation of motion can be obtained from equation (3) with 
d2z /d t2  as given in equation (16). 

The qualitative nature of the solutions to this problem can be found by returning to 
our analogy with the Schrodinger equation for an electron in one dimension. It is 
known that in most circumstances the eigenfunctions of the Schodinger equation are 
localized for a disordered potential in one dimension [19]. This at first sight would 
seem to imply that the stabilized vertical states of the liquid crystal molecule will not 
exist when a stochastic sum of normal modes provides the driving force of the pivot 
point. In physical terms, the phases of the various modes will occasionally tend to 
cancei, and then the molecule fails down. 

This analogy, however, is somewhat oversimplified, as there is a constraint on 
d2z /d t2  that cannot be ignored. In the case of a random alloy, the electron states of the 
lowest energy are localized in regions where there is a large statistical fluctuation in the 
concentration of the component with the strongest attractive potential. There is no 
theoretical limit on the number of consecutive atoms of this one species that can occur 
sequentially. In the inverted pendulum problem, on the other hand, the integral of 
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838 B, Lin and P. L. Taylor 

d2z /d t2  over a time interval represents the velocity change of the pivot point, and the 
integral of this represents its displacement, which is limited by anharmonic forces. 

These considerations suggest that perturbation-theoretic approaches to finding the 
form of O ( t )  may be unreliable, and numerical simulation should instead be employed. 
For small vibration amplitudes, however, we can still derive analytic expressions 
similar to equations (10) and (14) for threshold values of the liquid crystal system’s first 
anchoring transition. Let us first consider the case of planar anchoring energy. 
Equations (3), (1 1) and (16) give the equation of motion 

We now assume a frequency of the Debye form, so that Q, = nR with n integral, and 
rewrite equation (17) as 

--+ p-2gC A,cos(~~T) 8=0, 
d20  dr2 [ n 1 

where z =@t, p =  12w,y2m12Q, and g = 3(u/t) with ii being the average amplitude, and 
A, = (an/u)n2. When the average amplitude is small compared to the molecular length, 
then g<< I ,  and we have 

a =  c, +gC,(t)+g2C2(z)+g3C3(z)+. . . ; (19) 

p=a,g+a2g2 +a3g3 +. . . . (20)  

Substituting equations (19) and (20) into equation (18) gives an equation in powers of y 
of the form 

n n 1 c; + a,C, - 2 1  C,A, cos (2nz) c; + a2c,  + a,C1 - 2 c ,  A ,  cos (2nz) 

r 1 

+ g 3  C j+a3C,+a2C,+a ,C , -2C2~A,cos (2nz )  +...= 0, L n 1 
from which each power of g gives an independent equation. The g 1  equation yields 

cI1=O, (22) 

COA, c,= -2C-----cos(2nz). 
(2n)’ 

Using this a,  and C,  in the g 2  equation 

C’ + a2Co +a,C, - 2C, C A ,  cos (2nz)=O 
n 

we find 

COfC 
(2n)2 

C;  + a2Co + 2 C [ 1 + cos (4nt)l 

{cos [2(n - n’)r + cos [2(n + n’)z]} = 0, Co A ,  A,, 
(25) +2nL(2n)Z 
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Thermally induced anchoring transitions 839 

from which 

The critical condition for a molecule initially in a planar orientation (i.e. with coo <O) to 
make a transition to the homeotropic orientation is now 

P = a,g2, (27 a) 

when terms only of order g2 are retained. That is, 
2 1  

This is similar to the critical condition (14) for the single-frequency model. It shows that 
the total energy of a substrate atom should be at least of the order of the planar 
anchoring energy in order to stabilize the molecule in the homeotropic orientation. 

Numerical calculations, in which equation (1 7 )  was solved directly by the standard 
RungeeKutta method, have confirmed expression (27). Our calculations also indicate 
that the commensuration of frequencies is not necessary as long as the vibration 
amplitudes are small and the frequencies high. 

For the homeotropic anchoring energy (i.e. coo > 0), the effects of phonon dispersion 
on the dynamics of the molecule are much greater. In fact, the transition from 
homeotropic to planar alignment predicted by equation (10) is in general eliminated. 
The reason for this lies in the nature of the motion of the molecule in the single- 
frequency model. At the critical amplitude for instability, the orientation of the 
molecule is oscillating with a dominant frequency component equal to half the driving 
frequency of the substrate. That is to say, the instability occurs as the result of a 
resonance phenomenon. The presence of phonon dispersion reduces the Q-factor of 
this resonance to the point where the instability no longer occurs. In the analogy with 
the Schrodinger equation for a disordered solid, one could say that the forbidden band 
of energies between valence and conduction bands is now filled with impurity states. 

The homeotropic to planar transition may thus be eliminated by phonon 
dispersion. The planar to homeotropic transition, on the other hand, is retained, and 
the similarity in the form of the critical condition for this anchoring transition in the 
multi-frequency and the single-frequency cases suggests that the single-frequency 
model may be an adequate approximation if an appropriate frequency is chosen. 

6. Collective effects 
In the preceding sections we have studied the dynamic effects of thermal motion on 

the orientation of an isolated molecule. The most important characteristic, however, of 
a liquid crystal is the influence of intermolecular interactions on the orientation of 
individual molecules. We accordingly now enlarge our study to include the collective 
motion of an assembly of liquid crystal molecules. 

We consider a line of liquid crystal molecules on a substrate. Each molecule has a 
vibrating pivot and each interacts with its nearest neighbours through an interaction 
potential p(Bi ,Bj)  which is taken to be of the simple form 

p(Bi, B j ) =  K'(8i- 0J2, (28) 
with Bi and O j  the orientation of two neighbouring molecules and K' a constant. The 
motion is thus assumed confined to a plane, and motion out of the plane is ignored. This 
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840 B. Lin and P. L. Taylor 

reflects the characteristic property of nematic liquid crystal molecules of tending to 
align parallel to each other’s long axis. The torque Ti on a molecule is then a sum of the 
form 

ri = -C ~’(8, - ej), (29) 
j 

with , j  summed over nearest neighbours of i .  
The small-angle approximation to a more accurate expression proportional to 

sin 2(8, - O j )  will be valid at temperatures well below the clearing point. Because the 
multi-frequency analysis of the planar to homeotropic anchoring transition conditions 
gave qualitatively the same results as that of the single-frequency model, we will use the 
single-frequency model here, but assume that the phase yli of vibration for each 
molecule is random. In reality there will be correlations between the phases of the 
motion of neighbouring atoms, but we ignore this correlation in order to err on the side 
of underestimating the magnitude of the effect of the substrate motion. 

The equation of motion is now a set of coupled differential equations. In the case of 
planar anchoring energy, the equations of motion have the form 

I W0Y2 3 -. a,  d281 - 
d t 2 .  

( ) R2 cos(0t + q l )  8, -K(& -&), 

where the interaction constant K = 3y2K‘/m12, and the vi are random phases. The 
motions of an array of 50 interacting molecules, the equations of motion of which are 
given by equation (30), were computed numerically. The initial configurations for the 
equations were always a homeotropic alignment for each amplitude Z used. The 
calculations thus tested the ability of the substrate thermal motion to  maintain a 
homeotropic alignment rather than their ability to induce it in an initially planar 
system. We rely on the results of simulations of larger, multilayer systems to assure us 
that the assembly will eventually make a transition from any starting orientation to the 
homeotropic orientation when that orientation is dynamically stabilized. 

Theanchoring-transition pattern for the planar-anchoringsystem shown jn figure 6 
is the same as that predicted in the independent-molecule model. The director direction 
((T) in figure 6 is defined as the time and ensemble average of molecular axial angles Oi. 
As the average amplitude fi (proportional to T’’2)  is increased, the first anchoring 
transition from a planar to a homeotropic alignment occurs, and the system stays in the 
homeotropic alignment as the amplitude is further increased until at  very high 
temperatures it  goes beyond the homeotropic region boundary, at which the system re- 
enters a planar phase. 

Although thc strength of the intermolecular interaction does not change the pattern 
of anchoring transitions, it affects the temperature ranges of planar and homeotropic 
alignments. As shown in figure 6, the range of homeotropic alignment decreases as the 
interaction constant K increases. 

As mentioned in the paragraph preceding equation f30), the assumption was made 
that the phase yl, of the vibrations of each anchoring site were uncorrelated. In reality, 
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0.00 0.10 0.20 0.30 0.40 

?ill 
Figure 6. Numerical simulation gives these results for anchoring transitions in a line of 50 

interacting molecules. The larger interaction constant K ,  leads to  a smaller range of 
homeotropic-anchoring stability than the case for the smaller value K, .  

there will be some coherence in the motions of neighbouring substrate sites. In order to 
test the importance of this effect, some sample calculations were performed in which 
equation (30) was solved with all phases equal by setting yi = 0 for all i. The transition 
behaviour shown in figure 6 was not significantly altered, although the amplitudes iifor 
both planar to homeotropic and homeotropic to planar transitions were decreased 
slightly. 

7. Discussion 
The formal analysis of the effect of substrate vibration on the preferred orientation 

(i) As the temperature, and hence the amplitude of monochromatic vibration of 
the substrate is increased beyond a certain critical value, a single planar- 
anchored molecule makes a transition to the homeotropic orientation. 

(ii) As the temperature is further increased to a considerably higher value, the 
system re-enters the planar phase. At a comparable temperature a 
homeotropically anchored system can make a transition to a planar 
orientation. 

(iii) Inclusion of the effects of phonon dispersion does not significantly alter the 
prediction for the transition from planar to homeotropic. These effects may, 
however, weaken or eliminate the transition from homeotropic to planar. 

(iv) Collective effects, of the type that give rise to nematic or smectic phases, do not 
appreciably alter the predicted transition temperatures. 

It now only remains to offer some semi-quantitative estimates of the temperatures 
at which these transitions are predicted to occur. As an example we consider the liquid 
crystal MBBA [20] of which the molecular mass, m, is around 4 x kg and the 
molecular length is about 1 nm. The macroscopic surface anchoring is about 
- 10-4Jm-2,  so that for a surface number density of 10'7-10'8m-2 the anchoring 
energy per molecule is wo FZ - J. For a typical substrate phonon 
angular frequency i2 of around 1012 sK1 the thermal vibration amplitude a is of the 

of a surface layer of liquid crystal molecules has led to a number of conclusions: 

J or - 
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order of 0-1 nm. As a result the dimensionless combination o,/rnl2Q2 lies between 
- and - while (ail) is about lo-'. On the basis of the analysis given in this 
paper, we would conclude that the only transition likely to be physically realizable in 
this material is the initial transition from planar to homeotropic, which is predicted to 
occur at a temperature of a few hundred Kelvin. Succeding transitions caused by 
substrate vibration would not be easily realizable, as the predicted transition 
temperatures lie above the clearing point. The observed second tramition reported in 
MBBA [ S ]  would thus seem likely to have a different origin. 

In our model we have assumed that the anchoring strength (strength of attachment) 
of molecules o, does not change with temperature. This may appear to be in conflict 
with many experimental measurements [S, 21,221 that have shown the anchoring 
strength o, to be temperature-decreasing. We suggest that the effect of substrate 
thermal vibrations may just be a microscopic contribution to  the apparent temperature 
dependence of o,; the destruction of stability is equivalent to the weakening of 
anchoring strength. However, we do recognize that substrate thermal vibrations are 
not the only contributor to the temperature dependence of the anchoring strength, 
given that this behaviour has also been observed in the free surface of liquid crystals 

Finally, we note that no damping terms were included in the equations of motion of 
the models presented here for either the individual or collective behaviour. The reason 
for this omission lies in the microscopic character of the model, in which the 
randomness of the phases of the vibrations plays a role equivalent to thermal 
dissipation. However, we have run simulations of systems in which damping terms were 
included. The effects of including dissipation in this way were found to be insignificant; 
only very small changes in the anchoring transition temperatures were observed. 

~231.  

This work was supported by the U.S. National Science Foundation's Science and 
Technology Center program under grant DMR89-20147, and made use of the 
resources of the Ohio Supercomputing Center. Discussions with P. Palffy-Muhoray 
are gratefully acknowledged. 

References 
[l ]  JEROME, B., 1991, Rep. Proy. Phys., 54, 391. 
[2] PIERANSKI, P., and JEROME, B., 1991, Molec. Crystals liq. Crystuls, 199, 167. 
[3] FAETTI, S., and FRONZONI, L., 1978, Solid St.  Commun., 25, 1087. 
[4] CHIARELLI, P., FAETTI, S., and FRONZONI, L., 1983, J .  Phys., Paris, 44, 1061. 
[5] RYSCHENKOW, G., and KLEMAN, M., 1976, J. chem. Phys., 64, 404. 
[6] BIRECKI, H., 1984, Liquid Crystals and Ordered Fluids, Vol. 4, edited by A. C. Griffin and 

[7] HILTROP, K., and STECEMEYER, H., 1981, Ber. Bunsenyes. phys. Chem., 85,582; same as [ S ] ,  

[8] DI LISI, G. A,, ROSENBLATT, C., GRIFFIN, A. C., and HARI, U., 1990, Liq. Crystals, 7, 353. 
[9] BRASLAU, A,, PETROV, M., LEVELUT, A. M., and DURAND, G., 1988,12th International Liquid 

J.  F. Johnson (Plenum), p. 853. 

p. 515. 

Crystal Confirence, Freiburg, Germany. 
[lo] BECHHOEFER, J., JEROME, B., and PIERANSKI, P., 1990, Phys. Rev. A, 41, 3187. 
[ 1 I ]  BECHHOEFER, J.,  DUVAIL, J.-L., MASSOU, L., JEROME, B., HOKNKICH, R.  M., and PIERANSKI, 

[l2] BARBEKO, G., BARTOLINO, R., and MEUTI, M., 1984, J .  Phys. Lett., 45, L449. 
[I31 OKANO, K., 1983, Jap. J .  appl. Phys., 22, L343. 
[14] PONIEWIHKSKI, A,, and HOLYST, R., 1988, Phys. Rev. A, 38, 3721. 
(151 HOLYST, R., 1989, Mofec. Phys., 68, 391. 

P., 1990, Phys. Rev. Letl., 64, 1911. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Thermally induced anchoring transitions 843 

[16] A preliminary account of part of the present work was reported in Phys. Lett. A, 172,281 
(1993). 

[17] RAPINI, A., and PAPOULAR, M., 1969, J .  Phys., Paris, 30-C4 Suppl., 54. 
[18] JEFFREYS, H., and JEFFREYS, B., 1956, Methods of Mathematical Physics, third edition 

(Cambridge University Press), p. 488. 
[19] ANDERSON, P. W., 1958, Phys. Rev., 109, 1492. 
[20] KELKER, H., 1980, Handbook ofLiquid Crystals (Verlag Chemie); DE GENNES, P. G., 1974, 

[21] ROSENBLAT, C., 1984, J. Phys., 45, 1087. 
[22] YOBOYAMA, H., KOBAYASHI, S., and KAMER, H., 1987, J .  appl. Phys., 61,4501. 
[23] CHIARELLI, P., FAETTI, S., and FRONZONI, L., 1984, Physics Lett. A, 101, 31 .  

The  Physics of Liquid Crystals (Clatendon Press). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


